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Quantum weak chaos in a degenerate system
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Quantum weak chaos is studied in a perturbed degenerate system: a charged particle interacting with a
monochromatic wave in a transverse magnetic field. The evolution operator for an arbitrary number of periods
of the external field is built and its structure is explored in terms of the quasienergy eigenstates under resonance
conditions~when the wave frequency equals the cyclotron frequency! in the regime of weak classical chaos.
The new phenomenon of diffusion via the quantum separatrices and the influence of chaos on diffusion are
investigated and, in the quasiclassical limit, compared with its classical dynamics. We determine the crossover
from purely quantum diffusion to a diffusion that is the quantum manifestation of classical diffusion along the
stochastic web. This crossover results from the nonmonotonic dependence of the characteristic localization
length of the quasienergy states on the wave amplitude. The width of the quantum separatrices was computed
and compared with the width of the classical stochastic web. We give the physical parameters that can be
realized experimentally to show the manifestation of quantum chaos in a nonlinear acoustic resonance.
@S1063-651X~98!10412-9#

PACS number~s!: 05.45.2a, 03.65.2w
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I. INTRODUCTION

The problem of quantum chaos in intrinsically degener
systems possesses a number of interesting properties.
Kol’mogorov-Arnol’d-Moser ~KAM ! theorem in these sys
tems is not applicable@1# and in certain models an arbitrar
small perturbation is sufficient to induce an infinite stoch
tic web in phase space. The character of the web is de
mined by the type of perturbation. When the system is p
turbed by a monochromatic wave, the web wid
exponentially decreases with increasing actionI and the mo-
tion is practically localized@2#. If the perturbation has the
form of periodicd impulses, the web width is constant an
the particle, traveling along the web, can diffuse to infin
@2# ~see also Refs.@3,4#!. In both cases the web in (p,x)
phase space has a crystalline or quasicrystalline struc
The chaotic motion in these systems has been termed w
chaos since chaos occupies only a small portion of ph
space~see e.g., Ref.@2#!. In contrast, in strong~or global!
chaos, the web structure disappears and most of the p
space is filled with chaotic orbits. The peculiar resonan
structure and the appearance of an infinite stochastic
make degenerate systems very attractive objects in whic
study quantum manifestations of chaos.

The problem of weak and strong chaos has been ma
explored within the context of the kicked harmonic oscilla
@5,6#. It has been shown that the time of the classical desc
tion of quantum averages is considerably longer for we
than for strong chaos. The role of the symmetry of t
quasienergy~QE! functions was also analyzed in Ref.@5#. It
was found that under certain conditions, quantum diffus
within the stochastic web was truncated by quantum inter
ence effects@6#, similar to the case of strong chaos in th
kicked rotor@7#. The problem of quantum chaos on the s
chastic web has also been studied intensively in recent y
PRE 591063-651X/99/59~1!/294~9!/$15.00
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within the framework of the generalized kicked Harp
model@8,9#. Another simple and yet important~especially to
solid state physics! example of a degenerate system is that
a charged particle moving in a uniform magnetic field a
interacting with a monochromatic wave, propagating perp
dicularly to the magnetic field direction under the conditi
of cyclotron resonance. This two-dimensional problem
tantamount to the one-dimensional harmonic oscillator i
wave field@3,10#. In our previous work@11# we studied this
system quantum mechanically, focusing on the resonance
proximation, which appears as the first-order perturbation
the Floquet Hamiltonian. In the quasiclassical limit the d
namics in the resonance approximation is globally regula
phase space. The structure of the Floquet spectrum and
QE eigenfunctions for the exact and near-resonance c
were obtained and related to the classical phase space s
ture. The evolution of various representative initial sta
was investigated and the close connection between clas
and quantum dynamics at the cyclotron resonance was d
onstrated. In Ref.@12# it was shown that the boundaries o
the quantum cells act as dynamical barriers to the probab
flow. In the quasiclassical limit the dynamical barriers we
found to correspond to the separatrices in classical ph
space and tunneling through the ‘‘quantum separatric
was explored numerically.

In the present work we study the dynamical effects
chaos on the above-mentioned system under the conditio
cyclotron resonancev5vc (v and vc are the wave and
cyclotron frequencies, respectively!. This model seems to be
more closely related to experimental realizations in so
state physics than the kicked system. The evolution oper
for an arbitrary number of periods of the external field
built and its structure is explored in terms of the QE eige
states under the conditions of weak chaos. The structur
the evolution operator matrix is more complex than the m
294 ©1999 The American Physical Society
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PRE 59 295QUANTUM WEAK CHAOS IN A DEGENERATE SYSTEM
typical bandlike matrix structure. Thus the usual diagnos
of quantum chaos predicted by band random matrix the
@13,14# do not work in the case of weak chaos because o
a small number of QE eigenstates are affected by the pe
bation. A new phenomenon of diffusion over the quantu
separatrices and the effect of weak chaos on the diffusion
investigated here and compared in the quasiclassical l
with the dynamics in classical phase space. The cross
from purely quantum diffusion to a diffusion that in the qu
siclassical limit corresponds to classical diffusion within t
stochastic web is determined. The width of the quant
separatrices is computed and compared with the width of
classical stochastic web.

The paper is organized as follows. In Sec. II the ba
model is introduced. Also in Sec. II the structures of t
nonstationary Schro¨dinger equation and the evolution oper
tor in Ĥ0 representation are discussed. In Sec. III the pr
erties of the QE eigenstates are described. The phenom
of diffusion via the quantum separatrices and the influenc
chaos on the diffusion are investigated numerically in S
IV. In Sec.V we draw our conclusions.

II. EVOLUTION OPERATOR

The Hamiltonian of a charged particle in a magnetic fie
interacting with a monochromatic wave reads

Ĥ5

S p̂1
e

c
AD 2

2m
1v0cos~kx2vt !5Ĥ01V̂~x,t !, ~1!

wherem ande are, respectively, the mass and charge of
particle, p̂ is the momentum,k is the wave vector,v is the
wave frequency, andv0 is the amplitude of the perturbation
We choose the gauge ofA in the formA5(0,Hx,0) so as to
have the magnetic fieldH along thez direction and to have
the momentumpy as an integral of motion. The Hamiltonia
is equivalent to a one-dimensional simple harmonic osci
tor perturbed by a monochromatic wave field. Hence
problem is to determine the dependence of the wave func
on only two variablesx and t.

It is convenient to expand the state vector in the harmo
oscillator basis

c~x,t !5(
n

Cn~ t !cn~x!exp~2 iEnt/\!, ~2!

wherecn(x) is thenth eigenfunction of the simple harmon
oscillator HamiltonianĤ0 and En5\vc(n11/2) is the en-
ergy of thenth Landau level. Using Eq.~2!, the nonstation-
ary Schro¨dinger equation

i\
]c~x,t !

]t
5Ĥc~x,t ! ~3!

yields a set of differential-difference equations for the co
ficientsCn(t),
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i\Ċn5v0(
m

@Vn,n1m
~1! sin~vt !

1Vn,n1m
~2! cos~vt !#Cn1me2 imvct. ~4!

The matrix elementsVn,n1m
(1) (Vn,n1m

(2) ) describe the transi-
tions between the levels of opposite~equal! parity and can be
expressed via the Laguerre polinomials as@11#

Vn,n12m11
~1! 5

~21!mhme2h/4

2m11A~n11!•••~n12m11!
Ln

2m11S h

2D ,

~5a!

Vn,n12m
~2! 5

~21!mhme2h/4

2m11A~n11!•••~n12m!
Ln

2mS h

2D , ~5b!

whereh5(ka)2 plays the role of an effective~dimension-
less! Planck constant anda5A\c/eH is the magnetic length
For n@1@h the matrix elements can be approximated
terms of the Bessel functionsJm of orderm by @15#

Vn,n12m11
~1! 5

1

2

~21!mnm11/2e2h/4

A~n11!•••~n12m11!
J2m11~A2nh!,

~6a!

Vn,n12m
~2! 5

1

2

~21!mnme2h/4

A~n11!•••~n12m!
J2m~A2nh!. ~6b!

Since the perturbation is periodic in time, Floquet theo
can be used to describe the time evolution of the system
terms of the QE spectra«q and the QE eigenfunction
cq(x,t). The QE states are the eigenstates of the evolu
operatorÛ for one period of oscillation of the external fiel
T52p/v,

Û~T!cq~x,t !5expS 2
i«qT

\ Dcq~x,t !,

which can be defined by~see, for example, Ref.@16#, p. 385!

cq~x,t !5expS 2
i«qt

\ D(
n

Cn
q~ t !cn~x!

5expS 2
i«qt

\ Duq~x,t !, ~7!

where the functionsCn
q(t) anduq(x,t) are periodic in time,

uq(x,t1T)5uq(x,t).
The coefficientsCn

q(t) are the eigenvectors of the operat

Û in the representation of the HamiltonianĤ0 and can be
found by diagonalizing the corresponding matrixUn,m . The
following procedure is one way to obtain the matrix eleme
@17#. Let the evolution operatorÛ act on the initial state
Cn

(n0)(0)5dn,n0
,

Um,n~T!Cn
~n0!

~0!5Um,n0
~T!5Cm

~n0!
~T!. ~8!
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The coefficientsCm
(n0)(T) can be computed numerically b

integration of Eq.~4!. They form a column in the matrix
Um,n0

(T). Repetition of this process for initial states, o

thogonal to the previous one,Cn
n8(0)5dn,n8 , n8Þn0 , fills

the matrixUm,n0
(T). Diagonalization of the matrixUm,n(T)

yields the eigenvalues«q and the eigenvectorsCn
q . The num-

ber of the Landau levelsN in Eqs.~2! and~4! included in our
computations is equal to the size of the evolution opera
matrix Um,n(T) and hence to the number of its QE eige
states.

Once the eigenvalues«q and the eigenvectorsCn
q are ob-

tained, we may write the evolution operator for one per
Um,n(T) in the form @16#

Un,n8~T!5(
q

Cn
qCn8

q* exp~2 i«qT/\!. ~9!

By raisingUn,n8(T) to degreeM and using the orthogonality
of the eigenvectorsCn

q , one can obtain the evolution oper
tor that propagates the system towardM periodsUn,n8(MT)
by

Un,n8~MT!5(
q

Cn
qCn8

q* expS 2 i
«qMT

\ D . ~10!

Given Un,n8(MT), the evolution of any initial stateCn(0)
can be computed by using

Cn~MT!5(
n8

Un,n8~MT!Cn8~0!. ~11!

The expressions~10! and ~11! are much more practical fo
calculations than the integration of the set of different
equations~4!, especially in the limitt→`, because they al
low us to obtain the state of the system at any timet by a
simple summation. There are only two dimensionless par
eters determining the dynamics of the system, namely,
dimensionless amplitude of the perturbationsV05v0 /\v
and the effective Planck constanth in the arguments of the
matrix elements~5a! and~5b!. This is easy to see if we write
Eq. ~4! in dimensionless form by introducing the dimension
less timet5tvV0 . In this form, the phases of the oscillatin
terms are given by2mt/V0 . Thus the larger the amplitud
of the waveV0 , the smaller the frequency of the oscillation
and the larger the number of effective terms that particip
in the dynamics. Consequently, the parameterV0 determines
the number of effective terms on the right-hand side of E
~4!, which can be roughly estimated asm>V0 . The same
estimation yields the bandwidth of the evolution opera
matrix ~8! or ~9!. If V0!1 the resonant terms withm561
dominate the dynamics; they become independent of t
since they are being multiplied by sin(vt) or cos(vt). The
other terms oscillate fast and can be averaged out. Cons
ation of only these time-independent coefficients constitu
what we call the resonance approximation. As was show
Refs. @11,12#, the quantum resonance approximation in t
quasiclassical limit in general corresponds to the class
resonance approximation~see, e.g., Ref.@18#!. It is necessary
to point out that whenV0>1, the matrix elementsVn,n1m

;Jm(A2nh) decrease quickly withm in the region m
r
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.A2nh and this inequality can be treated as an additio
restriction on the bandwidth of the evolution operator matr

As V0 increases, the number of effective terms increa
too. This number was numerically determined by requiri
relatively small changes in the QE spectrum and in the
eigenfunctions after including an additional term to the s
~4!. The fluctuations did not exceed the accuracy of
Runge-Kutta method used for integration of Eq.~4!. The
numerically determined number of effective terms was fou
to be of the order ofV0 , in agreement with the speculation
presented above. The Runge-Kutta procedure was contro
by the normalization condition(nuCnu251; the fluctuations
of this value were smaller than 1024.

III. SEPARATRIX QUASIENERGY EIGENSTATES

In this section we discuss the structure of the QE sta
that determine the dynamics via Eqs.~10! and~11!. We first
consider the resonance approximation, which will be
starting point for the investigation of quantum chaotic effe
in next-order approximations@11,12#. The equation for the
QE eigenstates in the resonance approximation can be
tained by putting the QE eigenfunction in the form~7! into
Eq. ~4! and keeping only time-independent~resonance!
terms. Thus the set of differential-difference equations~4! is
transformed into the set of algebraic equations

EqCn
q5V0~Vn,n11Cn11

q 1Vn,n21Cn21
q !, ~12!

whereEq5«q /\v is the dimensionless quasienergy. This
an eigenvalue problem for the Floquet Hamiltonian@12#.
Equation~12! is similar to the Harper equation in the sym
metric gauge of the vector potentialA with periodic off-
diagonal modulation of the matrix elements@19#. In our case
the off-diagonal modulation is nonperiodic. The depende
of the matrix elementsVn,n11 on the Landau numbern is
shown in the upper part of Fig. 1. Due to oscillations
Vn,n11 and Vn,n21 with n, the Floquet Hamiltonian matrix
for determining the QE eigenstates~12! has a cell structure
the boundaries of the cell are given by the zeros of the Be
function @cf. Eq. ~6a!#. One can easily show that at sma
values ofEq (V0!1) the Floquet Hamiltonian matrix~12!
can be obtained from the Floquet matrix~9!. Moreover, as
will be shown below, the cell structure is maintained ev
for very large values ofV0 (V0;10); an extremely strong
perturbation amplitude is required to destroy the cells
tirely. The regions where the matrix elementsVn,n11 are
small @one such region is marked with the rectangle in t
plot Vn,n11(n) in Fig. 1# can be referred to as quantum sep
ratrices because in the quasiclassical limit their positions
action I correspond to the positions of the classical sepa
trices in phase space@11,12#. These are given by the zeros o
the Bessel function of order 1.

The structure of the QE eigenfunctions can be underst
by characterizing each one by its centern̄q5(nnuCn

qu2 and

its dispersionsq5@(n(n2n̄q)2uCn
qu2#1/2. The plot ofn̄q ver-

sussq in the resonance approximation is shown on the le
hand side of Fig. 2~a!; the figures on the right-hand side a
the Poincare´ surfaces of sections for the classical syste
with the same parameters. Each point in the plotn̄q(sq)
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corresponds to two QE eigenstates (Eq and2Eq) due to the
symmetry of Eq.~12! under the transformation

Eq→2Eq , Cn
q→~21!nCn

q , ~13!

corresponding to the transformationx→2x in Eq. ~7!. It is
seen that almost all the QE eigenfunctions are divided
groups with practically the samen̄q and differentsq . Each
group of states belongs to only one resonant cell becaus
n̄q for each QE eigenfunction is situated in the center of
cell andn̄q6sq does not exceed the size of the correspo
ing cell @the boundaries of the cells in Fig. 2~a! are marked
with arrows#. It was shown in Ref.@12# that the Husimi
function @20# of a QE state with quasienergyEq.0 is local-
ized in the upper part (x.0) of the phase space and th
Husimi function of a state with2Eq is situated in the lower
part (x,0). Thus each row on the left-hand side of Fig. 2~a!
corresponds to the two symmetrical classical resonance
shown on the right-hand side of Fig. 2~a!: The first row is
associated with two classical cells near the point (x50,p
50), the second row with the next symmetrical classi
cells, and so on. The number of the QE eigenfunctions in
individual cell equals approximately the number of the La
dau states in this cell.

Besides the localized eigenfunctions@arranged in rows in
Fig. 2~a!#, there are a small number~3–4 %! of delocalized
states that cannot be assigned to any particular cell; they
represented by the scattered points. These QE eigenfunc
have large dispersions, withsq exceeding the size of on

FIG. 1. Matrix elementsVn,n11 in dimensionless units versu
the Landau numbern ~upper part! and the most delocalized QE
eigenfunction in the resonance approximation~lower part!. The in-
set amplifies a small portion of the QE eigenfunction, marked w
brackets. Hereh50.37 andV050.002.
o

the
e
-

lls

l
n
-

re
ns

cell. Hereinafter we shall characterize the ‘‘localizatio
length’’ of the QE functions bysq . It was found numeri-
cally that the most localized eigenfunctions correspond to
largest QE eigenvalues~in absolute value!, while the most
delocalized states correspond to one of the smallest eigen
ues. Calculations with other values of the effective Plan
constanth have shown that the number of delocalized Q
eigenstates increases with increasingh, which indicates that,
as will be shown below, these states are of a pure quan
nature with no classical analogs. A representative delocal
eigenfunction, the widest one, marked in Fig. 2~a! with an
arrow, is shown in the lower part of Fig. 1 and its Husim
function is plotted in Fig. 3. Note that the eigenfunction a
the Husimi function have their maxima in the regions of t
classical separatrices@cf. Fig. 2~a!#. Thus the delocalized
states can be identified as ‘‘separatrix eigenstates.’’ The
simi function in Fig. 3 is symmetrical with respect top→
2p but not symmetrical under the transformationx→2x,
which turns the Husimi function corresponding to the eige
valueEq into the one corresponding to2Eq @see Eq.~13!#.
The high peaks in Fig. 3 near the separatrix linex50 result
from the slowing of the motion of the classical particl
which in turn increases the probability of finding the partic
in this region. The existence of fully delocalized eigensta
of the matrixUn,m(T) is a very interesting, nontrivial fea
ture. Initially ~time M50), the QE functions, due to thei
completeness, yield a Kroenecker deltadn,n8 in Eq. ~10!. If n
andn8 belong to different cells, then only a small number
the delocalized QE functions provide the cancellation
terms in Eq.~10!. The condition of completenes~10! ~at M
50) serves as a good check for our numerical calculatio
At short times (M;1) in the resonance approximation
whereV0!1, one may take into consideration only the e
ments along the first off diagonal of the matrixUn,m , which
are of the order ofEq ; the elements in the second off diag
onal will be of the order of (Eq)2 and so on. Let us estimat
the width Dni of the maxima of the separatrix eigenfun
tions, where the indexi labels the separatrix number. To th
end we approximate the matrix elementVn,n11 near the
separatrices by the linear function~see the upper part of Fig
1! Vn,n115Vn0 ,n0111a(n2n0). Here n0 is the Landau

state number where the value of the matrix elementVn,n11 is
minimum and a5]Vn0 ,n011 /]n. This approximation is

valid when the separatix regionDni is smaller than the tota
number of the Landau states in thei th cell ni , Dni!ni .
Under this condition, Eq.~12! takes the form

Eq

V0
Cn

q5@Vn0 ,n0111a~n2n0!#Cn11
q

1@Vn0 ,n0111a~n2n021!#Cn21
q . ~14!

For the separatrix states, the ratioEq /V0 is of the order of
1023 and one can omit the left-hand side of Eq.~14!; the
minimal matrix elementVn0 ,n011 near the separatrix is als
small and may be neglected as well. Under these assu
tions, Eq. ~14! gives the relation between the coefficien
Cn

q ,

Cn01m
q 5

m

m11

m22

m21
•••

1

2
Cn021

q . ~15!

h
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FIG. 2. Plot of the dispersionssq versusn̄q for the QE eigenfunctions withq51,2, . . . ,N for h50.37,N5381, and different values o
V0 : ~a! V050.002,~b! V056, and~c! V0513 ~left-hand side! and classical phase space for the same parameters~right-hand side!.
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HereCn021
q is the magnitude of the QE eigenfunction in th

maximum andm ~here odd! is the distance from the maxi
mum ~see the inset in Fig. 1!. The reduced equation~15! is
independent of the parameters and cell number; as a co
quence, the separatrix widthDni should be the same for a
cells. This was confirmed by our numerical calculations d
cussed below. In the quasiclassical limit, whenh→0 and
ni→`, the relative width of the quantum separatrixDni /ni
tends to zero, consistent with the classical dynamics.

To conclude our discussion on the structure of the
eigenstates in the resonance approximation it is necessa
point out that the numerical results obtained by using t
different approaches, the Floquet Hamiltonian formali
@16# in Eq. ~12! and the Floquet formalism atV0→0 de-
scribed in Sec. II, lead to the same results with very h
se-

-

E
to

o

h

accuracy. The latter method is nonperturbative and allows
to obtain the solutions at any~not necessarily small! ampli-
tude V0 . In the following discussion this approach will b
used to investigate quantum chaos in our system.

In order to incorporate chaos one must increase the
turbation amplitude. The structure of the QE eigenfunctio
in the presence of weak chaos is shown in Figs. 2~b! and
2~c!. Note the qualitative difference from the results obtain
for the resonance approximation@Fig. 2~a!#. Increasing the
perturbation amplitude to the valueV056 @Fig. 2~b!# gives
rise to a change in the separatrix eigenstates: Their dis
sions sq decrease on the average. In contrast, locali
eigenfunctions~arranged in rows! are slightly affected by the
perturbation, resulting in a small splitting of the rows. This
in close agreement with the classical behavior, namely,
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PRE 59 299QUANTUM WEAK CHAOS IN A DEGENERATE SYSTEM
region around the classical separatrix is first and most
fected by an increase ofV0 .

A further increase ofV0 to the valueV0513 @Fig. 2~c!#
leads to an increase in the number of delocalized states
on average, the localization length grows again. The m
drastic effect of chaos on the quasienergy eigenfunctions
observed in the region of Hilbert space corresponding
completely chaotic motion in classical phase space@the first
two cells on the right-hand side of Fig. 2~c!#. The chaos of
the corresponding QE eigenfunctions is manifested in
apparent random character of the dependencen̄q(sq); each
QE eigenfunction spans both cells so that they cannot
assigned to any particular one. Furthermore, our numer
experiments show that the dependence ofCn

q on the Landau
numbern in the chaotic area is also very irregular. Note th
as in the classical case, perturbation affects the various
differently: Cells with small values of Landau numbersn
appear to be more affected than those with largern.

In Figs. 2~b! and 2~c! there are no points corresponding
two eigenfunctions as there are in Fig. 2~a! because of the
substantial influence of the nonresonant terms on all the
eigenstates. Recall that in the resonance approximation
system has the symmetry defined by Eq.~13!. Weak chaos
lifts this symmetry and splits the rows on the left-hand sid
of Figs. 2~b! and 2~c!. The third and fifth rows correspond t
mixed phase space dynamics, shown on the right-hand s
of Figs. 2~b! and 2~c!.

IV. QUANTUM DIFFUSION VIA THE SEPARATRICES

The quantum dynamical manifestations of weak chaos
studied in this section by means of the nonperturbative te
nique based on the Floquet formalism discussed in Sec. I
the regime of weak chaos only a small portion of phase sp
is chaotic. Correspondingly, in the quantum model, only
small number of the eigenstates are affected~see Sec. III!.
However, we expect to detect the influence of weak chao
the dynamics if we consider the diffusion along the separ
ces. This intuition is based on the fact that the diffusion
the separatrices is governed by the separatrix QE eigenst
which are the ones mainly affected by the perturbation.
order to check this, let us consider the evolution of an ini
stateCn

n0(0)5dn,n0
, which is described by@see Eqs.~10!

and ~11!#

FIG. 3. Husimi function corresponding to the QE eigenst
plotted in Fig. 1.
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n0~M !5(

q
Cn

qCn0

q* exp~2 iEqM !, ~16!

where time is measured in the number of external field p
odsM. The value of theqth oscillating term is determined b
thenth andn0th amplitudes of theqth QE eigenfunctionCn

q .
A transition from then0th to thenth Landau level will occur
provided both coefficientsCn

q andCn0

q* in Eq. ~16! are large.

If we consider the transitions between the quantum sep
trices, then the main contribution to the evolution com
from the separatrix QE eigenfunctions as they have th
maxima at the various separatrix regions and the diffus
over the quantum separatrices is due to their delocalizat
The number of separatrix QE eigenfunctions is very sm
but their effect on the diffusion via the separatrices is cruc
because localized QE eigenfunctions have minima in the
cinity of the separatrices and do not contribute to this p
cess.

First, let us look at the diffusion over the quantum sep
ratrices in the resonance approximation where the sys
possesses no chaos. To this end, we place an initial s
Cn(0)5dn,n0

in the separatrix region and follow the evolu
tion of this state for a sufficiently long time in order to d
termine the position in Hilbert space of the quantum parti
at timet→`. The largest characteristic time in the system
tmax52p/vmin , where vmin is the minimal distance be
tween the effective QE eigenvalues, i.e., the eigenvalues
responding to the eigenstates that constitute the initial s
and determine the dynamics. As shown above, in our c
the effective eigenstates are the separatrix ones. After a
tmax the dynamics enters into a quasistationary regime an
is convenient to time average the probability in the regiot
@tmax in order to eliminate the influence of fluctuations a
exclude transient effects.

The results of this procedure are plotted in Figs. 4~a! and
4~b! for the sameh as in Fig. 2 and for two different value
of V0 ; the initial state, marked with a large arrow, was sit
ated at the Landau leveln0520 in the second cell near th
boundary of the first one. From Fig. 4~a! one may note that
the time-averaged probability distribution^Pn& in the classi-
cally inaccessible cells~even in the resonance approxim
tion, whereV0→0) is comparable to that of the initial~sec-
ond! cell. It was numerically confirmed that if an initial stat
Cn0

(0) is situated anywhere in the central region of a re
nance cell, then only an exponentially small part of a wa
packet tunnels to the neighboring cells and a logarithm
scale~in the probability distribution! is necessary in order to
recognize the tunneling phenomenon@12#. The second prin-
cipal point is the observation that the probability distributi
in Fig. 4~a! is highest around the boundaries of the quant
resonance cells, always being relatively small in the cen
regions. Thus anomalously intensive tunneling takes pl
only between the quantum separatrices and we may refe
this process as ‘‘diffusion via the quantum separatrice
This effect is reminiscent of the diffusion of a classical pa
ticle within the stochastic web. That idea is supported by
Husimi function of the initiallyd-like wave packet after evo
lution during a rescaled timet53000 @see Fig. 5~a!#. This
figure reminds us of the web structure in its correspond
classical phase space. However, this effect is of a pure q
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tum nature as the classical particle in the resonance app
mation has no possibility of penetrating one cell from a
other.

The effect of weak chaos on the diffusion over the se
ratrices is illustrated in Fig. 4~b!. Inspection of Figs. 4~a! and
4~b! shows that an increase of the amplitude leads to a
crease of the diffusion rate. This effect of chaos on quan
diffusion is rather unexpected: The increase in the pertu
tion inhibits tunneling instead of intensifying it. This is
direct consequence of the partial localization of the sep
trix QE eigenfunctions of Fig. 2~b! caused by the presence
weak chaos in the vicinity of the separatrix. This quantu
weak chaos effect is manifested in the plot of the Hus
function of the wave packetCn(0)5dn,n0

after evolution

during the timet53000@see Fig. 5~b!#. Hereinafter the time
t is measured in units ofT. The third separatrix is not a
clearly defined as in Fig. 5~a! or in Fig. 3, being partially
destroyed by chaos. The Husimi function looks like the cl
sical density distribution within the stochastic web in pha
space~see Fig. 5.7 in Ref.@2#!. The fourth and fifth separa
trices are absent and the Husimi function appears to be m
localized than in the resonance approximation. The struc
of the Husimi function within the first two cells is irregula
consistent with the more developed~not weak! chaos in this
region.

The phenomenon of localization becomes more eviden
Fig. 6, where we show the evolution of the squared disp
sion s2 as a function of the rescaled timet5V0t. The two
chosen values of the perturbation amplitudeV0 correspond,
respectively, to the resonance approximation and the reg
of weak chaos@the values ofh and initial conditions in Fig.

FIG. 4. Time-averaged probability distribution^Pn& versusn for
h50.37,N5381, and~a! V050.002 and~b! V056. Averaging was
performed over 300 times in the region 3000,t,6000 (t5V0t; t
is measured in units of the external field periodT52p/v). The
separatrix positions are marked with arrows.
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6 are the same as in Figs. 4~a! and 4~b!#. We see from Fig. 6
that the diffusion over the separatrices atV056 is sup-
pressed in comparison to the resonance case, consistent
the dynamical picture of Fig. 4. The data shown in Fig.
allow us to estimate the effective time of saturation of t
probability distributiontmax5V0tmax. As the wave packet

FIG. 5. Husimi functions of the states for the same parame
and initial conditions as in Fig. 4 at~dimensionless! time t
53000,Cn(0)5dn,n0

, n0520, and~a! V050.002 and~b! V056.

FIG. 6. Dynamics of the squared dispersions2(t) for the same
parameters and initial conditions as in Figs. 4~a! and 4~b! in units of
dimensionless time.
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PRE 59 301QUANTUM WEAK CHAOS IN A DEGENERATE SYSTEM
in Fig. 6 for V050.002 spreads over all the separatrices,
effective time in this case is defined by the minimal distan
between the separatrix QE eigenvalues; in the presenc
weak chaos (V056) tmax is mainly determined by the mini
mal distance between the QE eigenvalues within the in
cell because the probability distribution does not evolve
the other cells. The separatrix QE eigenvalues are situ
near the center of the spectrum where the spectrum is d
and the distances between these levels are smallest@11#.
Thus a large difference in the values oftmax in the two cases
of Fig. 6 arises from the different types of effective eige
states that determine the dynamics, namely,tmax(V0
50.002)@tmax(V056).

We will now show that the diffusion rate can be chara
terized by two parameters of the probability distributionPn
in the neighborhood of each separatrixi. These are the
maxima ofPn , denoted byPi , and its widthDni . Plots such
as Fig. 4~a! suggest that the distributionPn in the neighbor-
hood of the separatrixi, averaged over time, may be approx
mated by a Gaussian curve. Then the maximaPi ~width Dni)
is given by the height~width! of the corresponding Gaussia
Plots of Pi as a function of the perturbation amplitudeV0
give a measure of the diffusion rate. An inspection of Fig
reveals an exponential decrease of the diffusion rate up to
valueV08.6 (V08 depends onh). This provides further evi-
dence of the suppression of quantum diffusion over the se
ratrices due to weak chaos. A further increase ofV0 results in
a growth of the diffusion rate, which can be explained by
average increase in the localization length discussed in
III. Such behavior as a function of amplitude corresponds
the classical situation. The minimum in the curveV08 is the
crossover from the quantum to the classical diffusion. T
further the boundary of the resonant cell is from the bou
ary where the initial state was situated, the smaller the m
mum is in the corresponding curve because chaos destro
larger number of delocalized separatrix eigenfunctions
contribute to the diffusion. We speculate that the oscillatio
of the curves in Fig. 7 arise from the fact that the diffusi
over the quantum separatrices is determined by a small n
ber of ~separatrix! QE eigenstates and turn out to be ve

FIG. 7. Diffusion ratePi of an initially d-like wave packet,
placed atn0520, from the initial~first! separatrix to the ith one fo
i 53,4,5 as a function of the perturbation amplitudeV0 . h50.37
andN5401.
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sensitive to changes in the structure of the QE eigenfu
tions.

Now consider the plots of the widthsDni versus the wave
amplitudeV0 shown in Figs. 8~a!–8~c! for the same param
eters, initial conditions, and separatrices as in Fig. 7. T
data, presented in Fig. 8 have the following interesting f
tures.~i! Consistent with the above considerations@see Eq.
~15!#, the widths of the quantum separatrices atV0,V08 are
approximately the same for all the separatrices and for
values ofh ~the latter was confirmed by our calculations wi
other values ofh). ~ii ! On average, the widthsDni do not
change significantly withV0 until the amplitude of the per-
turbation reaches some valueV08 , after which theDni begin
to grow monotonically. Thus, in the regionV0,V08 , classical
chaos does not affect the width of the quantum separatr
~but does affect the diffusion rate in Fig. 7!. ~iii ! The thresh-
old V08 in the plot of Dni(V0) is the same as the thresho
~position of the minimum! in the plot ofPi(V0) in Fig. 7. At
that point the width of the quantum separatrix exceeds
width of the classical stochastic webDHi , which can be
approximated by@2#

DHi

\vc
521/2p7/2

~2hni !
1/2

V0h2
expF S 2

p

2 D 5/2~2hni !
1/2

V0h G ,
~17!

whereni is the center of thei th cell and the quantityhn in
the quasiclassical limit becomes the actionI. The results of
our calculations using Eq.~17! are presented in Figs. 8~a!–
8~c! with dashed lines. The discrepancy between the qu
tum and classical curves may presumably be attributed to
approximate character of Eq.~17!, which is valid only in the
case of an exponentially thin separatrix. Nonetheless,
trend of the quantum curves is qualitatively the same as
classical behavior.

V. CONCLUSION

The numerical data and qualitative analysis presente
this paper allow us to make the following conclusions ab
the nature of quantum weak chaos. In the quantum reson

FIG. 8. Widths of the quantum separatricesDni versus the per-
turbation amplitudeV0 for the same parameters, initial condition
and separatrices as in Fig. 7.
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approximation we investigated the resonance structure
Hilbert space and also the new phenomenom of quan
diffusion via the separatrix. We remark that this quantu
diffusion has no classical analog because classically, the
bits are confined to resonance cells. In quantum mecha
this diffusion results from tunneling across the quant
separatrices. An accidental intersection of levels of differ
cells ~associated with the overlap of QE functions! with ei-
genvaluesEq!V0 leads to the formation of delocalized Q
eigenfunctions. In other words, the cell structure of the e
lution operator matrix~and the Floquet Hamiltonian matrix!
gives rise to a long-range coupling between states of dif
ent cells. The dynamical manifestation of this effect is
anomalously large diffusion rate between the cells via
quantum separatrices. For sufficiently large values ofV0 the
nonresonant terms may be considered as an effective ran
perturbation that inhibits the long-range interaction, there
localizing the QE eigenstates.

When the perturbation becomes strong enough diffus
is recovered, but now it is of a completely different natu
Namely, for large values of the perturbation we observe
analog of the classical diffusion within the stochastic we
This is demonstrated by comparing the widths of the cla
cal and quantum separatrices. The structure of the quas
ergy eigenstates that explains the diffusion is also differe
In the resonance case they have the regular form, whic
maintained over several cells of Hilbert space, while at la
V0 such states are destroyed and diffusion takes place
cause the localization lengths of many QE eigenstates
crease on the average.

In this paper the evolution operator propagating the s
tem toward an arbitrary number of periods of the exter
field is built in the HamiltonianĤ0 basis. Its eigenstates~QE
eigenstates! are explored under the condition of resonance
the regime of weak chaos. In the new phenomenon of di
sion over the quantum separatrices it was found that a s
number of delocalized separatrix QE eigenstates play
dominant role. It was shown that weak quantum chaos le
to the localization of the separatrix eigenstates and henc
te
nt
e,

.

.M

ar

t.
of
m

r-
cs,

t

-

r-
n
e

om
y

n
.
n
.
i-
n-
t:
is
e
e-
n-

-
l

n
-

all
e

ds
to

suppression of quantum diffusion via the separatrices.
large values of perturbation,V0.V08 , we have observed a
recovery of the diffusion that was associated in the quasic
sical limit with the growth of the classical stochastic web
phase space.

It is necessary to point out that the parameters chose
our numerical experiments correspond to actual experime
situations. Acoustic cyclotron resonance can be observed
two-dimensional electron gas in semiconductor heterost
tures subject to a transverse magnetic field and in the fiel
a longitudinal sound wave. In order to observe this pheno
enon the electron relaxation timetp must be large enough to
satisfy the inequalityvctp@1. Under this condition and un
der the condition of cyclotron resonance, one can cho
parameters that allow the Fermi levelnF to be placed at the
boundary~quantum separatix! between the first and secon
cells. That is, the argument of the Bessel functi
J1(kaA2nF) must coincide with the first zero of the Bess
functionJ1 . In order to create this situation in an experime
one can choose the following experimental parameters:
sound wave frequency should be of the order of 10 GHz,
magnetic fieldH523103 Oe, the effective electron mas
m* 50.7me , and the electron concentrationN51011 cm22.
These parameters giveh50.4 andn05nF520. The value of
the parameterV0 is determined by the deformation div~u!
;ku0 , whereu0 is the acoustic wave amplitude. Thus th
value V0510 corresponds to the wave deformationku0
;1024–1025. When the proposed parameters are realize
an experiment we predict that quantum chaos will be ma
fested as, for example, an attenuation of the sound wave
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